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Algorithm for Computing the Propagator for
Higher Derivative Gravity Theories
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A simple algorithm for computing the propagator for higher derivative gravity
theories based on the Barnes–Rivers operators is presented. The prescription is
used, among other things, to obtain the propagator for quadratic gravity in an
unconventional gauge. We also find the propagator for both gravity and quadratic
gravity in an interesting gauge recently baptized the “Einstein” gauge [Hitzer
and Dehnen, Int. J. Theor. Phys. 36 (1997), 559].

1. INTRODUCTION

The usual way of computing the propagator for gravity theories is based
on the following standard procedures.

1. Linearize the Lagrangian corresponding to the original theory. This
is done in two steps. First we decompose the metric gmn as

gmn 5 hmn 1 khmn (1)

where hmn is the usual Minkowski metric and k is the square root of Einstein’s
constant, and afterward we insert (1) into the gravitational Lagrangian. Let
us designate the resulting Lagrangian as +g.

2. Add to +g a suitable gauge-fixing Lagrangian +gf. Of course, we are
assuming that the theory in hand is gauge-invariant.

3. Cast the resulting Lagrangian,
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+ 5 +g 1 +gf

into the bilinear form

+ 5 1–2 hmn 2mn,rs hrs

4. Invert the operator 2.
The last item in the list above, i.e., the inversion of the gravitational

kinetic matrix which is necessary to calculate the graviton propagator,
involves in most cases a substantial amount of Lorentz algebra on symmetric
rank-two tensors. To avoid this tedious calculation and to save time, we
propose an algorithm for inverting the operator 2 based on the Barnes–Rivers
operators [1–5]. To prove the efficacy of the prescription, we compute the
propagator concerning quadratic gravity using an unconventional gauge-
fixing Lagrangian. From this result we obtain in a straightforward way the
propagator for both general relativity and higher derivative gravity in a series
of interesting gauges. The “Einstein” gauge [6] is considered as well. We
also calculate the propagator for a higher derivative gravity theory which is
not gauge-invariant, namely, Fierz–Pauli higher derivative gravity [7].

We use natural units throughout. In our convention the signature is
(12 22). The curvature tensor is defined by Ra

bgd 5 2­dGa
bg 1 . . . , the

Ricci tensor by Rmn 5 Ra
mna, and the curvature scalar by R 5 gmn Rmn, where

gmn is the metric tensor.

2. THE ALGORITHM

As we have already mentioned, to find the graviton propagator we have
to invert the operator 2mn,rs. This operator is symmetric in the indices (mn),
(rs) and under the interchange of mn with rs. Barnes and Rivers showed
that a complete set of operators that span the space of the operators with the
symmetries above is given in momentum space by [1–5]

P1
mn,rs 5 1–2 (Qmrvns 1 Qmsvnr 1 Qnrvms 1 Qnsvmr)

P2
mn,rs 5 1–2 (QmrQns 1 QmsQnr) 2 1–3 QmnQrs

P0
mn,rs 5 1–3 QmnQrs

P0
mn,rs 5 vmnvrs

P0
mn,rs 5 Qmnvrs 1 vmnQrs

where Qmn and vmn are the usual longitudinal and transverse vector projec-
tion operators
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Qmn 5 hmn 2 km kn /k2, vmn 5 km kn /k2

which satisfy the relations

QmrQr
n 5 Qmn, vmrvr

n 5 vmn, Qmrvr
n 5 0

The Minkowski metric in our convention is hmn 5 diag(11, 21, 21, 21).
Here km is the momentum of the graviton exchanged.

The set of the four operators {P1, P2, P0, P0} is a complete set of
projection operators for symmetric rank-two tensors. They are idempotent,
mutually orthogonal, and satisfy the completeness relation

[P1 1 P2 1 P0 1 P0]mn,rs 5 1–2 (hmrhns 1 hmshnr) [ Imn,rs

In the rest frame of a massive tensor field, the family of operators {P1, P2,
P0, P0} select out the spin-one, spin-two, and two spin-zero parts of the field.
However, in order to have a complete basis for the operator space of the
gravitational field equations, we must include in that collection the transfer
operator P0. Its multiplicative table is

P0 P1 5 P1P0 5 P0P2 5 P2P0 5 O

P0P0 5 3(P0 1 P0)

P0P0 5 P0P0 5 Puv

P0P0 5 P0P0 5 Pvu

where Puv
mn,rs [ umnvrs, Pvu

mn,rs [ vmnurs, and O is the null operator. Note
that P0 5 Puv 1 Pvu.

We are now ready to find the propagator. Expanding both operators 2
and 221 in the basis {P1, P2, P0, P0, P0}, we get

2 5 x1 P1 1 x2 P2 1 x0 P0 1 x0 P0 1 x0 P0

221 5 y1 P1 1 y2 P2 1 y0 P0 1 y0 P0 1 y0 P0

Taking into account that 2221 5 I 5 P1 1 P2 1 P0 1 P0, we promptly
obtain the following set of simultaneous equations:

x1 y1 5 1, x0 y0 1 3x0 y0 5 1

x2 y2 5 1, x0 y0 1 x0 y0 5 0

x0 y0 1 3x0 y0 5 1, x0 y0 1 x0 y0 5 0

Row reducing the augmented matrix of the system to echelon form yields
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Fx1 0 0 0 0 1
0 x2 0 0 0 1
0 0 x0 0 3x0 1
0 0 x0 0 x0 0
0 0 0 x0 3x0 1
0 0 0 x0 x0 0

G
, Fx1 0 0 0 0 1

0 x2 0 0 0 1
0 0 x0 0 3x0 1
0 0 0 x0 3x0 1
0 0 0 0 (x0x0 2 3x2

0) 2x0

0 0 0 0 0 0
G

Therefore, the propagator is given by

221 5
1
x1

P1 1
1
x2

P2 1
x0

x0 x0 2 3x2
0

P0 1
x0

x0 x0 2 3x2
0

P0

2
x0

x0 x0 2 3x2
0

P0 (2)

The expansion of the operator 2 in the basis {P1, P2, P0, P0, P0} is
trivially obtained by the use of the following tensorial identities, which follow
easily from the very definition of the operators P1, P2, P0, P0, P0:

1–2 (hmrhns 1 hmshnr) 5 [P1 1 P2 1 P0 1 P0]mn,rs

hmnhrs 5 [3P0 1 P0 1 P0]mn,rs

hmrknks 1 hmsknkr 1 hnrkmks 1 hnskmkr 5 k2[2P1 1 4P0]mn,rs (3)

hmnkrks 1 hrskmkn 5 k2[P0 1 2P0]mn,rs

kmknkrks 5 k4P0
mn,rs

The identities

P2
mn,rs 5 1–2 [hmrhns 1 hmshnr] 2 1–3hmnhrs 2 [P1 1 2–3 P0 2 1–3 P0]mn,rs

P0
mn,rs 5 1–3hmnhrs 2 1–3 [P0 1 P0]mn,rs

greatly facilitate the task of costing the propagator in a form where the terms
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proportional to the graviton momentum are omitted, which in practice widely
simplifies computations involving conserved currents.

3. THE PROPAGATOR FOR QUADRATIC GRAVITY IN AN
UNCONVENTIONAL GAUGE

The Lagrangian for quadratic gravity is given by

+g 5 F2R
k2 1

a
2

R2 1
b
2

R2
mnG!2g (4)

where k2 5 32pG, G being Newton’s constant, and a and b are dimensionless
parameters. Linearizing (4), we obtain

+g 5
b
4

[▫hmn ▫hmn 2 (Am
,m)2 2 F 2

mn 1 (1 1 4c)(Am
,m 2 ▫f)2]

2
1
2

[hmn ▫hmn 1 A2
n 1 (An 2 ­nf)2] (5)

where Am [ hmn
,n, f [ h, Fmn [ Am,n 2 An,m, b [ bk2/2, c [ a/b. Indices

are lowered (raised) using hmn (hmn).
Lagrangian (5) is invariant under the infinitesimal coordinate

transformation

xm → xm 1 kjm (x)

where jm(x) is an infinitesimal vector field. It must be infinitesimal to avoid
inconsistency with (1). Under this transformation we have, from (1),

hmn(x) → hmn(x) 2 jm,n 2 jn,m (6)

The presence of the local gauge symmetry (6) requires the addition of
a gauge-fixing term +gf to the Lagrangian (5). It is common practice to
choose a linear combination of Am and ­mf as gauge functions. However,
looking at (5), we clearly see the presence not only of this linear combination,
but also of its curl (Fmn) and its divergence (Am

,m 2 ▫f). Therefore, we
choose the gauge-fixing Lagrangian

+gf 5 l1(An 2 l­nf)2 1
b
4

[l2(Am
,m 2 l▫f)2 1 l3F 2

mn]

which, despite being rather unconventional, it is very convenient for our
purposes.

Casting the Lagrangian
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+ 5 +g 1 +gf

into the bilinear form

+ 5
1
2

hmn2mn,rshrs

and expanding the operator 2 in the basis {P1, P2, P0, P0, P0} with the help
of the tensorial identities (3), we obtain

2 5 x1P1 1 x2P2 1 x0P0 1 x0 P0 1 x0 P0

where

x1 [ b/2(l3k4 1 2l1k2/b)

x2 [ b/2(k4 1 2k2/b)

x0 [ b/2(4k4 2 4k2/b 1 12k4c 1 3l2l2k4 1 12l1l2k2/b)

x0 [ b/2(l2k4 2 2ll2k4 2 8ll1k2/b 1 l2l2k4 1 4l1l2k2/b 1 4l1k2/b)

x0 [ b/2(2ll2k4 2 4ll1k2/b 1 l2l2k4 1 4l1l2k2/b)

The propagator in momentum space is given by (2). From this result we can
obtain the propagator in a series of interesting gauges not only for higher
derivative gravity, but also for Einstein’s gravity, by judiciously choosing the
parameters l, l1, l2, and l3. We list below the most important covariant
gauges that result from such choices.

1. Julve-Tonin gauge (l 5 0) [8]:

+gf 5 l1A2
n 1

b
4

[l2(Am
,m)2 1 l3 F 2

mn]

Propagator:

221 5
m2

1

k2(m2
1l1 2 k2l3)

P1 1
m2

1

k2(m2
1 2 k2)

P2

1
m2

0

2k2(k2 2 m2
0)

P0 1
m2

1

k2(2l1m2
1 2 l2k2)

P0

where

m2
0 [

2
k2(3a 1 b)

, m2
1 [ 2

4
k2b

Absence of tachyons requires b , 0 and 3a 1 b . 0. Note that the choice
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l 5 0 gives a propagator that only contains the spin-projection operators,
i.e., P1, P2, P0, P0, and it gives a propagator all parts of which behave like k24.

For Einstein’s gravity, we have

+gf 5 l1A2
n

221 5
1

l1k2 P1 1
1
k2 P2 2

1
2k2 P0 1

1
2l1k2 P0

2. de Donder gauge (l2 5 l3 5 0, l 5 1/2):

+gf 5 l11An 2
1
2

­nf2
2

Propagator:

221 5
1

l1k2 P1 1
m2

1

k2(m2
1 2 k2)

P2 1
m2

0

2k2(k2 2 m2
0)

P0

1 F 2
l1k2 1

3m2
0

2k2(k2 2 m2
0)
GP0 1

m2
0

2k2(k2 2 m2
0)

P0

For gravitation, the propagator in the de Donder gauge can be expressed as

221 5
1

l1k2 P1 1
1
k2 P2 2

1
2k2 P0 1 1 2

l1k2 2
3

2k22P0 2
1

2k2 P0

3. Feynman gauge (l2 5 l3 5 0, l1 5 1, l 5 1/2):

+gf 5 1An 2
1
2

­nf2
2

Propagator:

221 5
1
k2 P1 1

m2
1

k2(m2
1 2 k2)

P2 1
m2

0

2k2(k2 2 m2
0)

P0

1 F2
k2 1

3m2
0

2k2(k2 2 m2
0)
GP0 1

m2
0

2k2(k2 2 m2
0)

P0

For Einstein’s gravity, the propagator is given in the Feynman gauge by



1606 Accioly, Ragusa, Mukai, and de Rey Neto

221
mn,rs 5

hmrhns 1 hmshnr 2 hmnhrs

2k2

4. THE PROPAGATOR IN THE “EINSTEIN” GAUGE

To find the propagator for quadratic gravity in the “Einstein” gauge [6],
we add to (5) the gauge-fixing Lagrangian,

+gf 5
lf2

k2

where l is the gauge parameter, and afterward we cast the resulting Lagrangian
+ into the bilinear form + 5 1/2hmn2mn,rshrs. Expanding the operator 2 in
the basis {P1, P2, P0, P0, P0}, we get

2 5
b
2 1k4 1

2k2

b 2P2 1
b
2 14k4 2

4k2

b
1 12k4c 1

12l
bk22P0

1
2l
k2 P0 1

2l
k2 P0

As a consequence, the propagator is given in momentum space by

221 5
m2

1

k2(m2
1 2 k2)

P2 1
m2

0

2k2(k2 2 m2
0)

P0

1 Fk2

2l
1

3m2
0

2k2(k2 2 m2
0)
GP0 2

m2
0

2k2(k2 2 m2
0)

P0

If we assume that m0 and m1 are real, which corresponds to the absence of
tachyons (both positive and negative energy) in the dynamical field, it is
easy to see that the previous expression tends to

221 5
1
k2 P2 2

1
2k2 P0 1 Fk2

2l
2

3
2k2GP0 1

1
2k2 P0

as both m2
0 and m2

1 → `, which is the propagator for Einstein’s gravity in the
“Einstein” gauge.

5. THE PROPAGATOR FOR A HIGHER DERIVATIVE GRAVITY
THEORY WHICH IS NOT GAUGE-INVARIANT

We consider now Fierz–Pauli higher derivative gravity [7]. To arrive at
the Lagrangian for this theory, we add the linear part of the Lagrangian
containing the four-derivative terms (a/2)R2!2g and (b/2)R2

mn!2g, namely
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+hd 5
b
4

[▫hmn ▫hmn 2 (Am
,m)2 2 F 2

mn 1 (1 1 4c)(Am
,m 2 ▫f)2]

where b [ bk̃2/2, c [ a/b, k̃2 being the “Einstein’s constant” for Fierz–Pauli
gravity [9], to the Fierz–Pauli Lagrangian, i.e.,

+FP 5 2
1
2

[hmn▫hmn 1 (An)2 1 (An 2 ­nf)2] 2
1
2

m2(h2
mn 2 f2) (7)

Since this theory is not gauge-invariant owing to the Proca-like mass
term, we do not need to introduce any gauge fixing-term into (7) in order to
find the propagator. As a result, all we have to do in this case is to invert
the operator

2 5 1b
2

k4 1 k2 2 m22P2 2 m2P1 1 (2bk4 2 2k2 1 6bck4 1 2m2)P0

1 m2P0

From (2) we promptly obtain

221 5
1

(b/2)k4 1 k2 2 m2 P2 2
1

m2 P1

2
2bk4 1 6bck4 2 2k2 1 2m2

3m4 P0 1
1

3m2 P0 (8)

If we take b 5 c 5 0 in (8), we recover the propagator concerning Fierz–Pauli
gravity [10], namely

221
mn,rs 5

1–2 (hmr hns 1 hms hnr) 2 1–3 hmn hrs

k2 2 m2

where we have omitted the terms proportional to the graviton momentum.

6. CONCLUSIONS

We proposed a prescription for finding the propagator concerning higher
derivative gravity theories based on the Barnes–Rivers operators. Using this
algorithm, we computed the propagator for quadratic gravity in an unconven-
tional gauge and, by a suitable choice of the gauge parameters, we reobtained
the propagator in a series of interesting gauges which are broadly used in
the literature. We also calculated the propagator for both quadratic gravity
and Einstein’s gravity in a very curious gauge baptized the “Einstein” gauge
by Hitzer and Dehmen [6]. Finally, we used the proposed prescription for
finding the propagator concerning Fierz–Pauli higher derivative gravity [7].
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This theory is an example of a higher derivative gravity theory which is not
gauge-invariant.
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